Martingale Transforms, the Dyadic Shift and the Hilbert Transform: a Sufficient Condition for Boundedness between Matrix Weighted Spaces

نویسنده

  • ROBERT KERR
چکیده

I fhI is the respective Haar coefficient, and σ(I) = ±1. This operator, which we denote by Tσ, is a dyadic martingale transform. The martingale transform is bounded as an operator on L(R,C). We want to find a condition on matrix weights, U and V , that implies that all martingale transforms are uniformly bounded as operators from L(R,C, V ) to L(R,C, U) where L(R,C, V ) is the space of functions f such

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sufficient Condition for the Boundedness of Operator-weighted Martingale Transforms and Hilbert Transform

Let W be an operator weight taking values almost everywhere in the bounded positive invertible linear operators on a separable Hilbert space H. We show that if W and its inverse W−1 both satisfy a matrix reverse Hölder property introduced in [2], then the weighted Hilbert transform H : LW (R,H) → L 2 W (R,H) and also all weighted dyadic martingale transforms Tσ : LW (R,H)→ L 2 W (R,H) are bound...

متن کامل

Logarithmic Growth for Matrix Martingale TransformA

We are going to give the example of the operator weight W satisfying operator Hunt-Muckenhoupt-Wheeden A 2 condition but which provides the unbounded martingale transform on L 2 (W). The construction relates weighted boundedness with the boundedness of \dyadic vector Hankel operators".

متن کامل

On Weak and Strong Sharp Weighted Estimates of Square Function

We reduce here end-point estimates for one singular operator (namely for dyadic square function) to Monge–Ampère equations with drift. The spaces are weighted spaces, and therefore the domain, where we solve our PDE is non-convex. If we are in the end-point situation our goal is either to find a logarithmic blow-up of the norm estimate from below, or to prove that there is upper estimate of the...

متن کامل

A remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane

In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.

متن کامل

Operator Valued Hardy Spaces

We give a systematic study on the Hardy spaces of functions with values in the non-commutative L-spaces associated with a semifinite von Neumann algebra M. This is motivated by the works on matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), and on the other hand, by the recent development on the non-commutative martingale inequalities. Our non-com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009